Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling.
نویسندگان
چکیده
Foot-and-mouth disease is a highly contagious viral illness of wild and domestic cloven-hoofed animals. The causative agent, foot-and-mouth disease virus (FMDV), replicates rapidly, efficiently disseminating within the infected host and being passed on to susceptible animals via direct contact or the aerosol route. To survive in the host, FMDV has evolved to block the host interferon (IFN) response. Previously, we and others demonstrated that the leader proteinase (L(pro)) of FMDV is an IFN antagonist. Here, we report that another FMDV-encoded proteinase, 3C(pro), also inhibits IFN-α/β response and the expression of IFN-stimulated genes. Acting in a proteasome- and caspase-independent manner, the 3C(pro) of FMDV proteolytically cleaved nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), a bridging adaptor protein essential for activating both NF-κB and interferon-regulatory factor signaling pathways. 3C(pro) specifically targeted NEMO at the Gln 383 residue, cleaving off the C-terminal zinc finger domain from the protein. This cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of 3C(pro) abrogated NEMO cleavage and the inhibition of IFN induction. Collectively, our data identify NEMO as a substrate for FMDV 3C(pro) and reveal a novel mechanism evolved by a picornavirus to counteract innate immune signaling.
منابع مشابه
Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses
Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its r...
متن کاملFoot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development
The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease...
متن کاملThe Coxsackievirus B 3Cpro Protease Cleaves MAVS and TRIF to Attenuate Host Type I Interferon and Apoptotic Signaling
The host innate immune response to viral infections often involves the activation of parallel pattern recognition receptor (PRR) pathways that converge on the induction of type I interferons (IFNs). Several viruses have evolved sophisticated mechanisms to attenuate antiviral host signaling by directly interfering with the activation and/or downstream signaling events associated with PRR signal ...
متن کاملCrystal structure of the 3C protease from Southern African Territories type 2 foot-and-mouth disease virus
The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3C(pro)). As in other picornaviruses, 3C(pro) performs most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3C(pro) from serotype A-one of the seven serotypes of FMDV-adopts a trypsin-li...
متن کاملCrystallization of foot-and-mouth disease virus 3C protease: surface mutagenesis and a novel crystal-optimization strategy.
Foot-and-mouth disease virus (FMDV) 3C protease (3C(pro)) plays a vital role in virus replication by performing most of the cleavages required to divide the viral polyprotein precursor into its functional component proteins. To date, no structural information has been available for FMDV 3C(pro), which is an attractive target for antiviral drugs. Targeted mutagenesis of surface amino acids ident...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 86 17 شماره
صفحات -
تاریخ انتشار 2012